STA?	LE .	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
N.	C.	17BP.8.R.123	1	14

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY RICHMOND

PROJECT DESCRIPTION REPLACE BRIDGE NO. 760064 ON -L- (SR 1424/SANDHILL GAME MANAGEMENT RD) OVER ROCKY FORK CREEK

SITE DESCRIPTION _

CONTENTS

SHEET NO.	DESCRIPTION
1	TITLE SHEET
2, 2A	LEGEND (SOIL & ROCK)
2B, 2C	SUPPLEMENTAL LEGEND (GSI
3	SITE PLAN
4-5	PROFILES
6-7	CROSS SECTIONS
8-II	BORE LOGS & CORE LOGS
12-13	CORE PHOTOGRAPHS
14	SITE PHOTOGRAPHS

PERSONNEL

J. WILLIAMSON

T. WILLIAMS

N. BRADLEY

C. CHANDLER

R. KRAL

INVESTIGATED BY _S&ME, INC.

DRAWN BY <u>N.</u> Bradley

CHECKED BY K. HILL

SUBMITTED BY J. WILLIAMSON

DATE JANUARY 2018

9751 SOUTHERN PINE BLVD CHARLOTTE, NC 28273 (704) 523-4726

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1(99) 707-850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (INP-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOL THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION, THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEM NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED TO THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:

 I. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY MAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

UNLESS ALL SIGNATURES COMPLETED

PROJECT REFERENCE NO. SHEET NO. 17BP.8.R.123 2

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS (PAGE 1 OF 2)

											(PA	4GE	(OF 2)					
	SOIL DESCRIPTION												GRADATION					
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO I 206, ASTM D1586). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING:											BLOWS PE	ER FOOT CATION	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.					
CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,									OTHE	R PERTINE	ANGULARITY OF GRAINS							
	VERY STIFF.G	RAY, SIL	TY CLAY, MO	DIST WITH	INTER	RBEDDEL	FINE	SAND	LAYERS	HIGHLY PLA	STIC.A-7-6	,	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.					
CENEDAL					ID A					CATION			MINERALOGICAL COMPOSITION					
GENERAL CLASS.			.ar materia Passing #2					MATERI SSING #2		ORO	GANIC MATERI	ALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.					
GROUP	A-1	A-3		A-2		A-4	A-5	A-6	A-7	A-1, A-2	A-4, A-5		ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.					
	A-1-a A-1-b		A-2-4 A-2	-5 A-2-6	A-2-7	55005501	V		A-7-5. A-7-6	A-3	A-6, A-7	**********	COMPRESSIBILITY SLIGHTLY COMPRESSIBLE LL < 31					
SYMBOL	888888888888888888888888888888888888888	000000		- 22			1,71						MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50					
% PASSING *10	50 MX									GRANULAR	SILT- CLAY	MUCK,	PERCENTAGE OF MATERIAL					
*40	30 MX 50 MX 15 MX 25 MX		35 MX 35	MY 35 MY	35 MY	36 MN	36 MN	36 MN	36 MN	SOILS	SOILS	PEAT	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS OTHER MATERIAL					
MATERIAL	20 /					50 1		00 1					TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%					
PASSING *40 LL	_		40 MX 41 F	40 MV		 40 MV	41 MM	40 MV	41.00	SOILS	WITH		LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%					
PI	6 MX		10 MX 10							LITTL MODE		HIGHLY	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE					
GROUP INDEX	0	0	0	4	MX	8 MX	12 MX	16 MX	NO MX	AMOUN	ITS OF	ORGANIC SOILS	GROUND WATER					
USUAL TYPES OF MAJOR MATERIALS	STONE FRAGS. GRAVEL, AND SAND	FINE SAND		OR CLAYE		SIL [*] SOII		CLA SOI		ORGA MAT			✓ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING ✓ STATIC WATER LEVEL AFTER 24 HOURS ✓ MATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING ✓ MATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING ✓ MATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING ✓ MATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING ✓ MATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING ✓ MATER LEVEL AFTER 24 HOURS ✓ MATER LEVEL AFTER MATER MATE					
GEN. RATING										FAIR TO			VPW PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA					
AS SUBGRADE			ENT TO GOO					0 POOR		POOR	POOR	UNSUITABLE	SPRING OR SEEP					
		PI OF A	-7-5 SUBGR	OUP IS ≤ SISTE						> LL - 30			MISCELLANEOUS SYMBOLS					
		Τ,	OMPACTN			RANC	GE OF	STAND	ARD		E OF UNC		TT 25 (425					
PRIMARY :	SOIL TYPE	L	CONSIST	ENCY		PENETR	(N-VA	ALUE)	TENCE	COMPI	RESSIVE S (TONS/FT		WITH SOIL DESCRIPTION OF ROCK STRUCTURES					
				GENERALLY GRANULAR					4 TI						SOIL SYMBOL Output Description SEPT DEST BORING SLOPE INDICATOR INSTALLATION			
MATERIA	AL.		MEDIUM DENS				10 T				N/A		ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER THAN ROADWAY EMBANKMENT AUGER BORING TEST					
(NON-CC	HESIVE)	VERY DENSE											THAN ROADWAY EMBANKMENT TEST					
GENERA			VERY S					2 0 4			< 0.25 0.25 TO		— INFERRED SOIL BOUNDARY — CORE BORING SOUNDING ROD					
SILT-CL	AY.		MEDIUM STIFF								Ø.5 TO 1	.0	INFERRED ROCK LINE MW MONITORING WELL TEST BORING WITH CORE					
MATERI (COHESI			STIF VERY S				8 TI				1 TO 2 2 TO 4		ALLINIAL SOIL POLINDARY A PIEZOMETER CPT NAVALLIE					
			HAR		<u> </u>	D CE	> > A Thi		· F		> 4		INSTALLATION					
				XTUR		R GF							RECOMMENDATION SYMBOLS VINDEBULT					
U.S. STD. SI OPENING (M					10 2 . 00	40 0.42		60 0.25	200 0.075	270 5 0. 053			UNSUITABLE WASTE					
BOULDE (BLDR.		BBLE		AVEL GR.)		COARS)		FINE	: ا ١	SILT (SL.)	CLAY (CL.)	UNDERCUT STREET EXCHAPATION - EMBANKMENT OR BACKFILL					
					_	(CSE. S			(F SD	.)			ABBREVIATIONS					
GRAIN MM SIZE IN			75 3		2.0		(2. 25		0.05	0.005	i	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED					
		OIL	MOIS	TURE	- 00	ORRE	ΙΑΤ	ION	ΩF	TERMS			CL CLAY MOD MODERATELY γ - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC $\gamma_{\rm d}$ - DRY UNIT WEIGHT					
	MOISTURE	SCALE		FIEL	D MOIS	STURE				FIELD MOIS	STURE DES	CRIPTION	CSE COARSE ORG ORGANIC					
(AT	TERBERG LII	MITS)		DE:	SCRIPT	TION				1225 11011			DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK					
					TURATI SAT.)	ED -				OUID; VERY			e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON					
LL _	_ LIQUID	LIMIT	-	``	JH1.7			111011	OLLOF	THE ONO	0110 #111	IN THOLL	F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK					
PLASTIC RANGE				- WE	T - (W	D				REQUIRES (ı	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL FRAGS FRAGMENTS W - MOISTURE CONTENT CBR - CALIFORNIA BEARING					
(PI) PL	PLASTI	C LIM	IT _					ALIAL	N UPI.	IMUM MOIS	TURE		HI HIGHLY V - VERY RATIO					
ОМ	_ OPTIMU	м мо:	ISTURE	- MO	IST -	(M)		SOLID	AT O	R NEAR OP	TIMUM MO	ISTURE	EQUIPMENT USED ON SUBJECT PROJECT DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:					
SL	+ SHRINK	AGE L	IMIT _										CME-45C CLAY BITS X AUTOMATIC MANUAL					
				- DR	Y - (D	1)				ODITIONAL IMUM MOIS)	6° CONTINUOUS FLIGHT AUGER CORE CLIZE					
				- 1	PLAS	STICI	TY						CME-55 X 8' HOLLOW AUGERS CORE SIZE:					
						ITY IN		PI)		DF	RY STRENG	TH .	CME-550 HARD FACED FINGER BITS X-N Q2					
	PLASTIC	TIC				Ø-5 6-15		_		_	VERY LOW	, -	VANE SHEAR TEST TUNG,-CARBIDE INSERTS HAND TOOLS:					
MOD	DERATELY P HLY PLASTI	LASTI	С			16-25 OR MO	IRE				MEDIUM HIGH		CASING W/ ADVANCER POST HOLE DIGGER					
	EHOTI	-				DLOR							PORTABLE HOIST X TRICONE 2.9 STEEL TEETH HAND AUGER					
													X DIEDRICH D-50 TRICONE TUNGCARB. SOUNDING ROD VANE SHEAR TEST					
	TIONS MAY DIFIERS SL												CORE BIT VANE SHEAR TEST					
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.																		

PROJECT REFERENCE NO. SHEET NO.

17BP.8.R.123

2A

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS (PAGE 2 OF 2)

		(PAGE 2	,					
	ROCK DES		TERMS AND DEFINITIONS					
ROCK LINE I SPT REFUSAL BLOWS IN N	NDICATES THE LEVEL AT WHICH NON-COAS L IS PENETRATION BY A SPLIT SPOON SA	OULD YIELD SPT REFUSAL IF TESTED. AN INFERRED STAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL, MPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 NSITION BETWEEN SOIL AND ROCK IS OFTEN	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. AQUIFER - A WATER BEARING FORMATION OR STRATA. ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAI					
ROCK MATER	IALS ARE TYPICALLY DIVIDED AS FOLLOW	S:	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING					
WEATHERED ROCK (WR)	100 BLOWS PER FO	N MATERIAL THAT WOULD YIELD SPT N VALUES > OT IF TESTED. RAIN IGNEOUS AND METAMORPHIC ROCK THAT	A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC. ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND					
CRYSTALLINE ROCK (CR)		REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE.	SURFACE.					
NON-CRYSTAL ROCK (NCR)	LINE FINE TO COARSE G	RAIN METAMORPHIC AND NON-COASTAL PLAIN THAT WOULD YEILD SPT REFUSAL IF TESTED. ES PHYLLITE, SLATE, SANDSTONE, ETC.	CALCAREOUS (CALC) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE. COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.					
COASTAL PLA SEDIMENTARY (CP)		DIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD K TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.					
		HERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.					
FRESH	ROCK FRESH, CRYSTALS BRIGHT, FEW JOINT HAMMER IF CRYSTALLINE.	S MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.					
VERY SLIGHT (V SLI.)		SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.					
SLIGHT (SLI.)	1 INCH. OPEN JOINTS MAY CONTAIN CLAY.	AND DISCOLORATION EXTENDS INTO ROCK UP TO IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	<u>FAULT</u> - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.					
MODERATE	CRYSTALS ARE DULL AND DISCOLORED. CR SIGNIFICANT PORTIONS OF ROCK SHOW DIS	YSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES. FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM					
(MOD.)	GRANITOID ROCKS, MOST FELDSPARS ARE D	ULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS HOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	PARENT MATERIAL.					
	WITH FRESH ROCK.	TORS STORM TORKY E000 OF STRENGTH AS COMPARED	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE					
MODERATELY SEVERE		STAINED, IN GRANITOID ROCKS, ALL FELDSPARS DULL CAOLINIZATION, ROCK SHOWS SEVERE LOSS OF STRENGTH	FIELD.					
(MOD. SEV.)	AND CAN BE EXCAVATED WITH A GEOLOGIS IF TESTED, WOULD YIELD SPT REFUSAL	T'S PICK. ROCK GIVES "CLUNK" SOUND WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.					
SEVERE		STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.					
(SEV.)	TO SOME EXTENT. SOME FRAGMENTS OF ST		LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.					
VERY	IF TESTED, WOULD YIELD SPT N VALUES >	<u>100 BPF</u> STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.					
SEVERE (V SEV.)	BUT MASS IS EFFECTIVELY REDUCED TO S REMAINING, SAPROLITE IS AN EXAMPLE OF	OIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK ROCK WEATHERED TO A DEGREE THAT ONLY MINOR NIN. IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENC OF AN INTERVENING IMPERVIOUS STRATUM. RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.					
COMPLETE	ROCK REDUCED TO SOIL. ROCK FABRIC NOT	DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF					
	SCATTERED CONCENTRATIONS. QUARTZ MAY ALSO AN EXAMPLE.	BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.					
VEDY HADD	ROCK H	ARDNESS P PICK, BREAKING OF HAND SPECIMENS REQUIRES	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.					
VERY HARD	SEVERAL HARD BLOWS OF THE GEOLOGIST'		SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO					
MODERATELY	TO DETACH HAND SPECIMEN. CAN BE SCRATCHED BY KNIFE OR PICK. GO	OUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT					
HARD	EXCAVATED BY HARD BLOW OF A GEOLOGIS BY MODERATE BLOWS.	ST'S PICK. HAND SPECIMENS CAN BE DETACHED	OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF					
MEDIUM HARD		DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. EICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE	A 140 LB HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.					
SOFT	CAN BE GROVED OR GOUGED READILY BY K	NIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.					
VERY	CAN BE CARVED WITH KNIFE. CAN BE EXC	AVATED READILY WITH POINT OF PICK. PIECES 1 INCH	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.					
SOFT	OR MORE IN THICKNESS CAN BE BROKEN B FINGERNAIL.	Y FINGER PRESSURE. CAN BE SCRATCHED READILY BY	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.					
	FRACTURE SPACING	BEDDING	BENCH MARK: BM#ISTA.17+82 -L-,67'LT					
TERM VERY WID		TERM THICKNESS VERY THICKLY BEDDED 4 FEET	N 464499, E 1788169 ELEVATION: 258,16 FEET					
WIDE MODERATE	3 TO 10 FEET ELY CLOSE 1 TO 3 FEET	THICKLY BEDDED 1.5 - 4 FEET THINLY BEDDED 0.16 - 1.5 FEET						
CLOSE VERY CLO	Ø.16 TO 1 FOOT	VERY THINLY BEDDED 0.03 - 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET	NOTES:					
FEAT CEC		THINLY LAMINATED < 0.008 FEET	FIAD: FILLED IMMEDIATELY AFTER DRILLING					
		ATION	4					
FOR SEDIMEN	TARY ROCKS, INDURATION IS THE HARDEN	ING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC	•					

RUBBING WITH FINGER FREES NUMEROUS GRAINS:

DIFFICULT TO BREAK WITH HAMMER.

SAMPLE BREAKS ACROSS GRAINS.

GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.

SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE:

GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.

GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE:

FRIABLE

INDURATED

MODERATELY INDURATED

EXTREMELY INDURATED

DATE: 8-15-14

PROJECT REFERENCE NO. SHEET NO.

17BP.8.R.123

2B

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

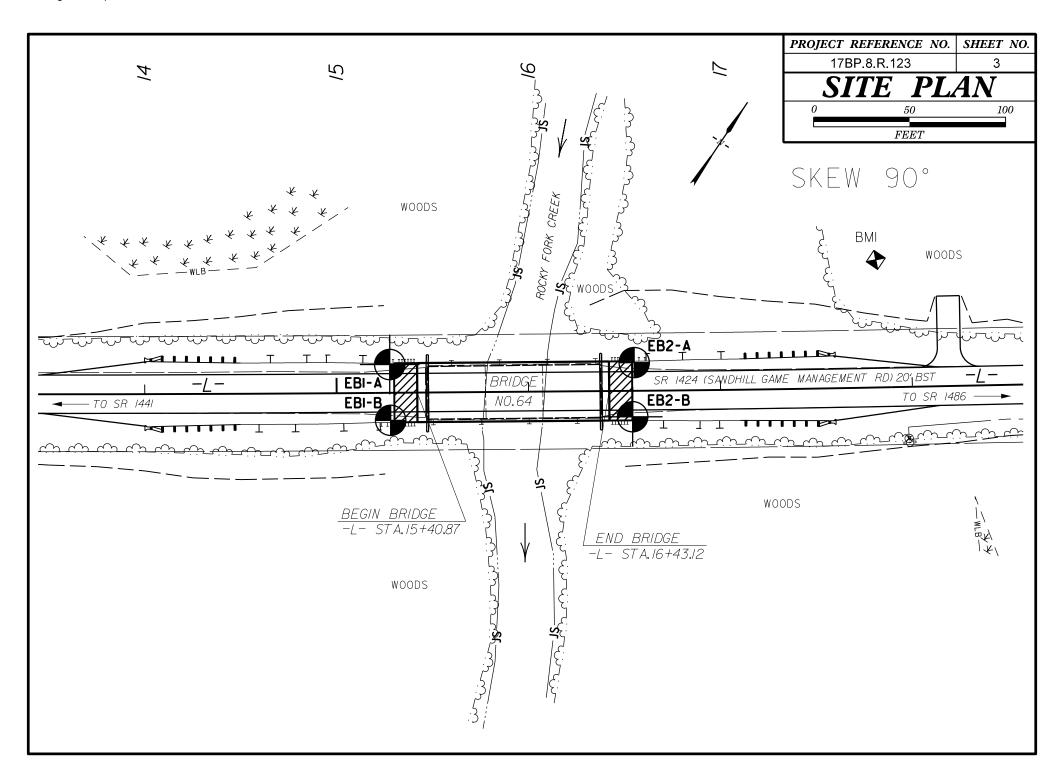
SUBSURFACE INVESTIGATION

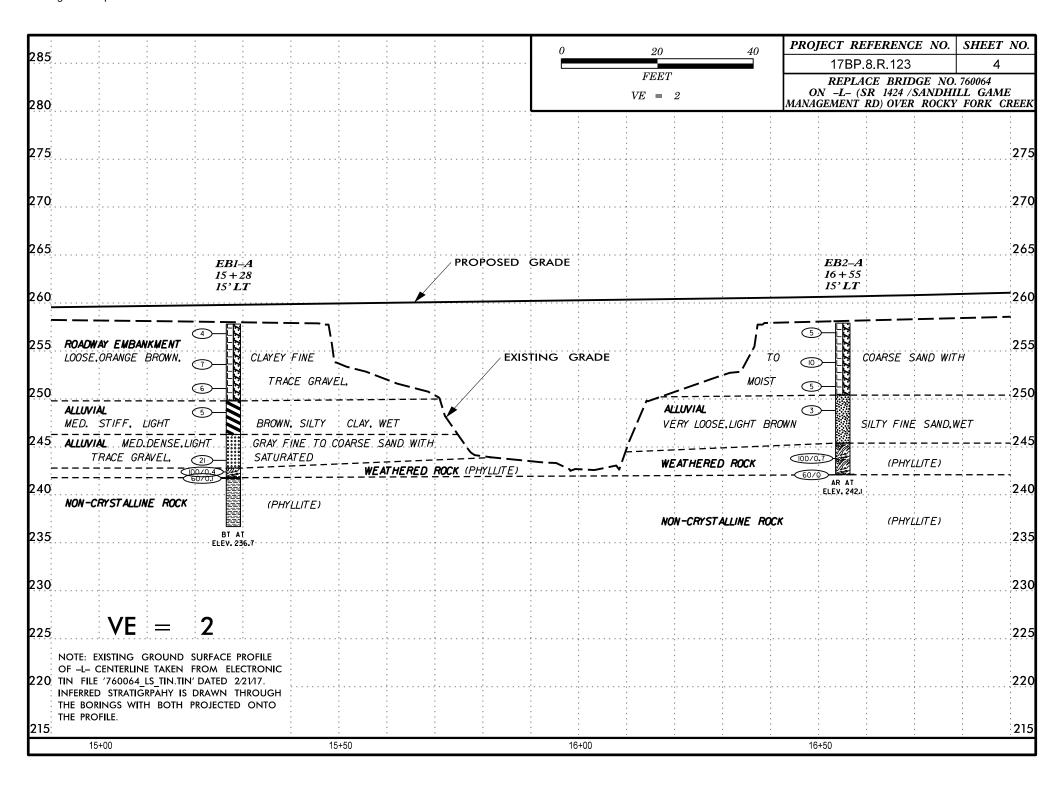
SUPPLEMENTAL LEGEND, GEOLOGICAL STRENGTH INDEX (GSI) TABLES FROM AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS (PAGE 1 OF 2)

FROM $AASHTO$ $LRFD$ $BRIDGE$ AASHTO LRFD Figure 10.4.6.4-1 $-$ Determination of GSI for Jo:				•	GE 1 OF	2)
GEOLOGICAL STRENGTH INDEX (GSI) FOR JOINTED ROCKS (Hoek and Marinos, 2000) From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Quoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavorable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis.	SURFACE CONDITIONS	VERY GOOD Very rough, fresh unweathered surfaces	COOD Sourfaces Sough, slightly weathered, iron stained Sourfaces	MANAGERATE AND ACTION OF STREET AND SMOOTH, MODERATELY WEATHERED AND ALTERED SURFACES	P POOR Slickensided, highly weathered surfaces with compact coatings or fillings	VERY POOR Slickensided, highly weathered surfaces with soft clay coatings or fillings
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities	CES	90			N/A	N/A
BLOCKY - well interlocked undisturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets	- ROCK PIECE!		70 60			
VERY BLOCKY - interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets	ERLOCKING OF			50		
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity	IN			40	30	
DISINTEGRATED - poorly interlocked, heavily broken rock mass with mixture of angular and rounded rock pieces	 				20	
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	N/A	N/A			10

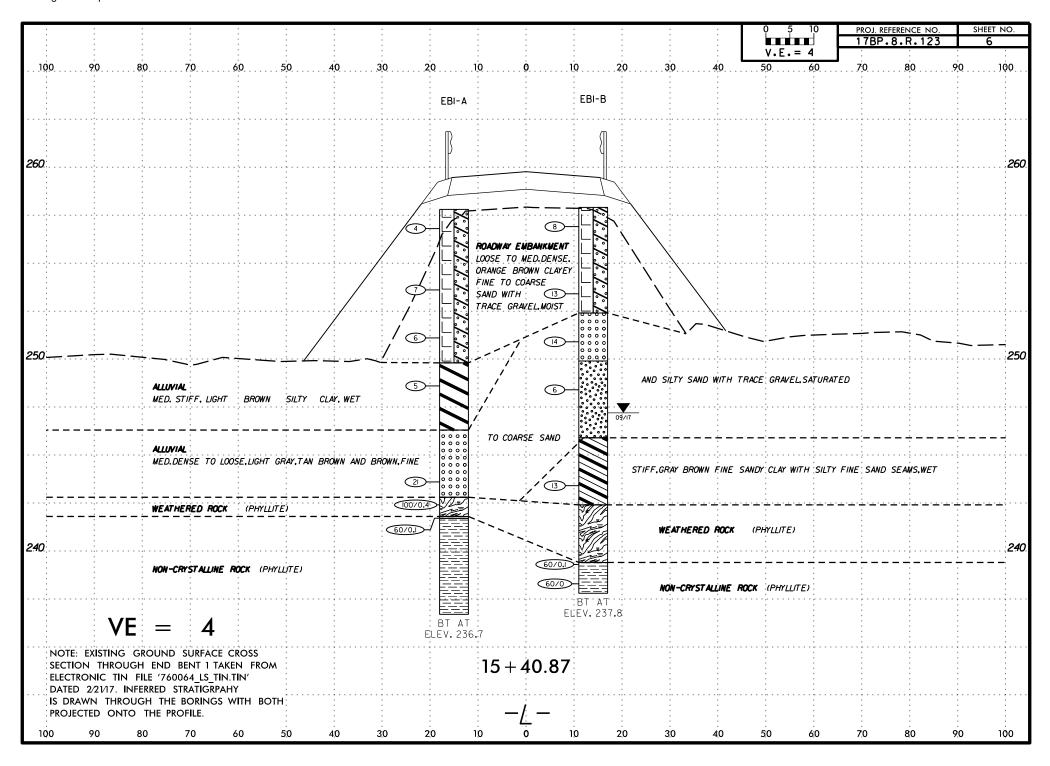
PROJECT REPERENCE NO. SHEET NO.

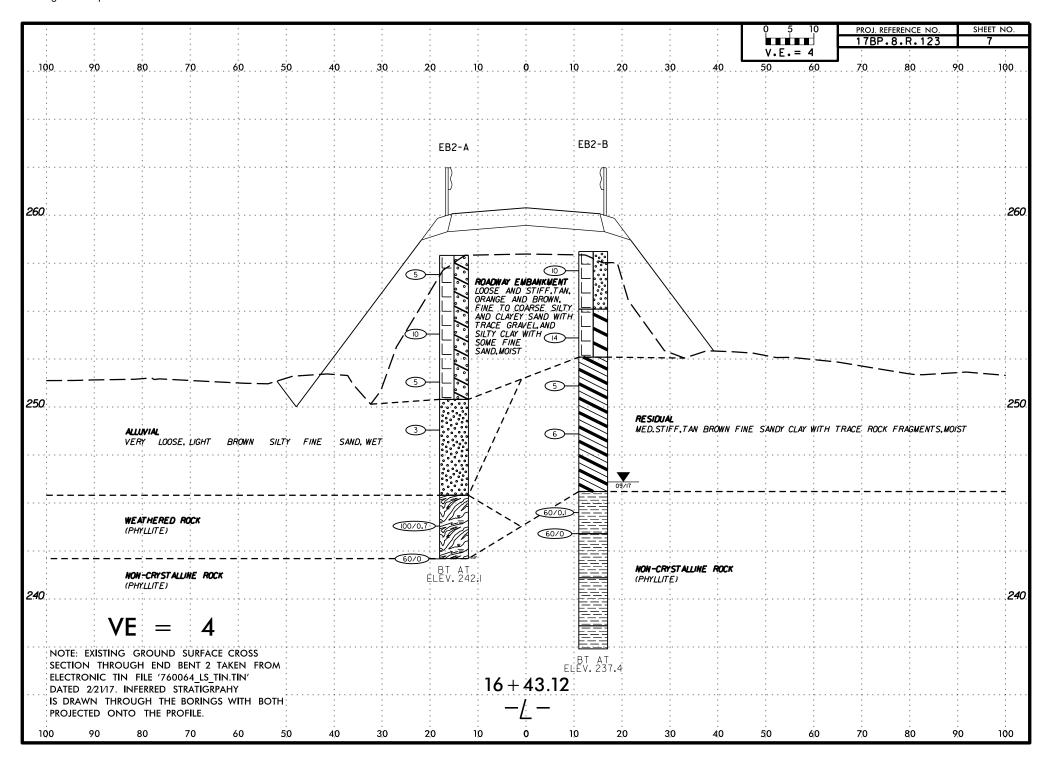
17BP.8.R.123

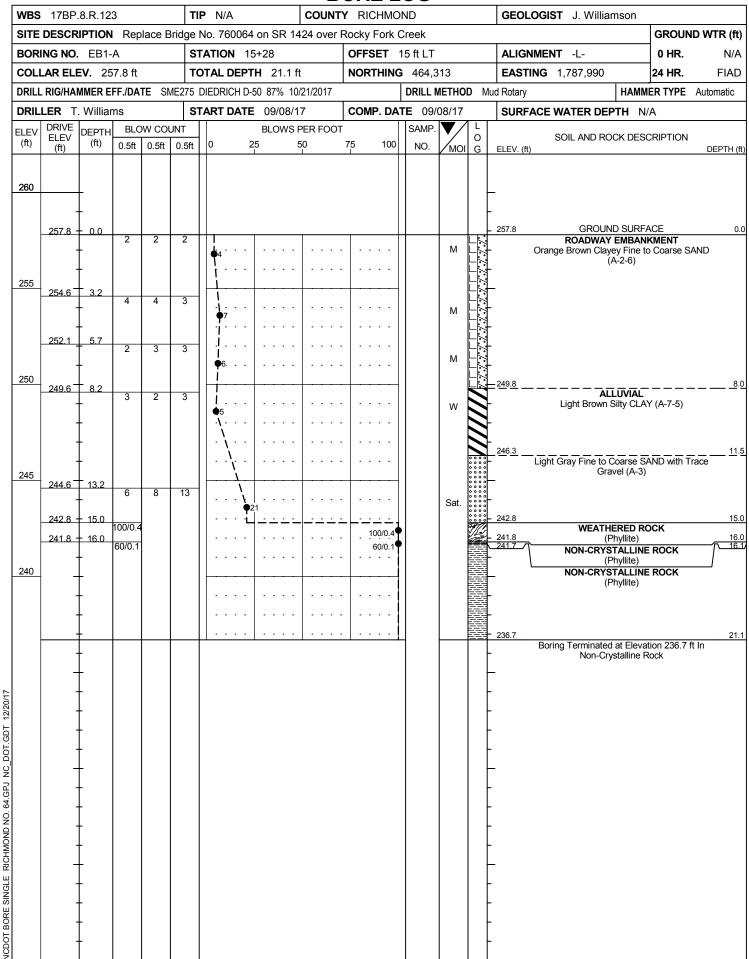

2C

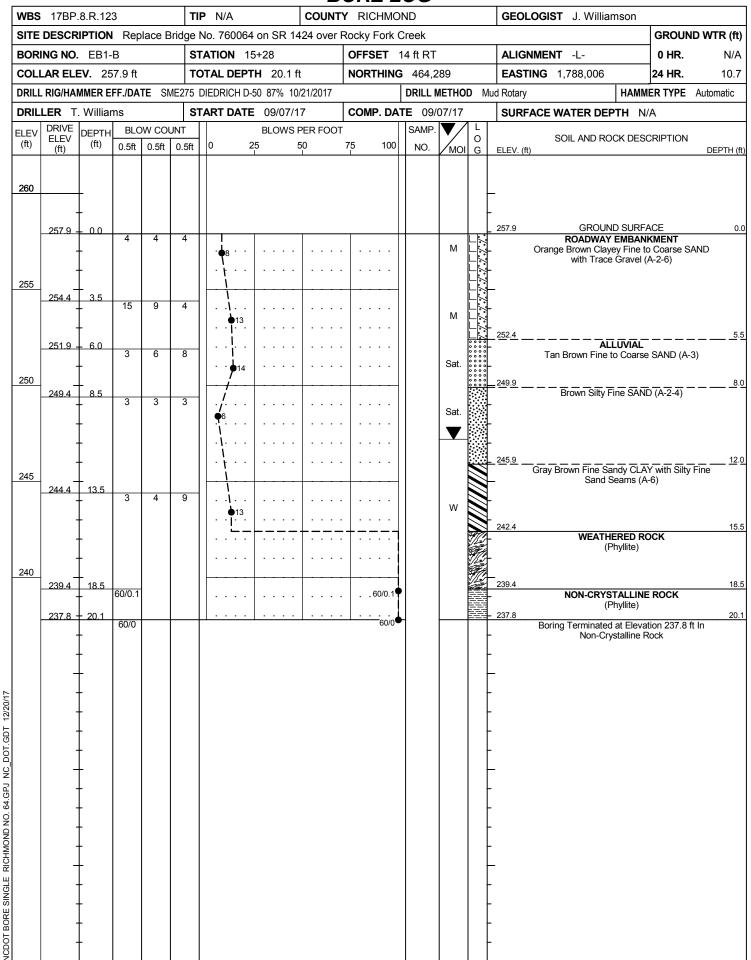

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

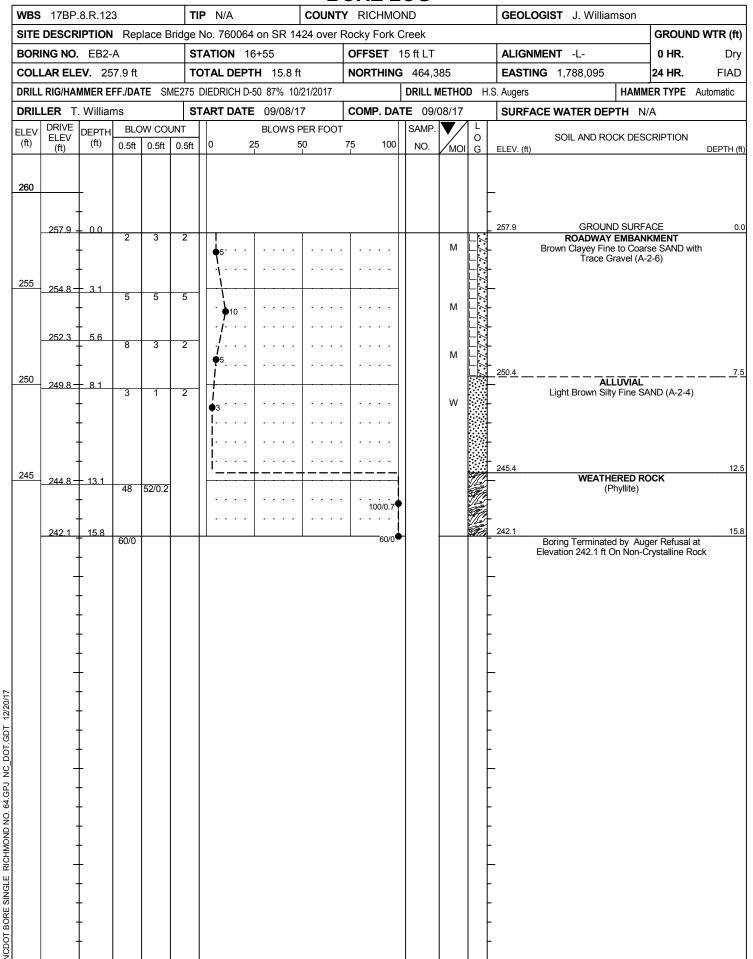

SUBSURFACE INVESTIGATION

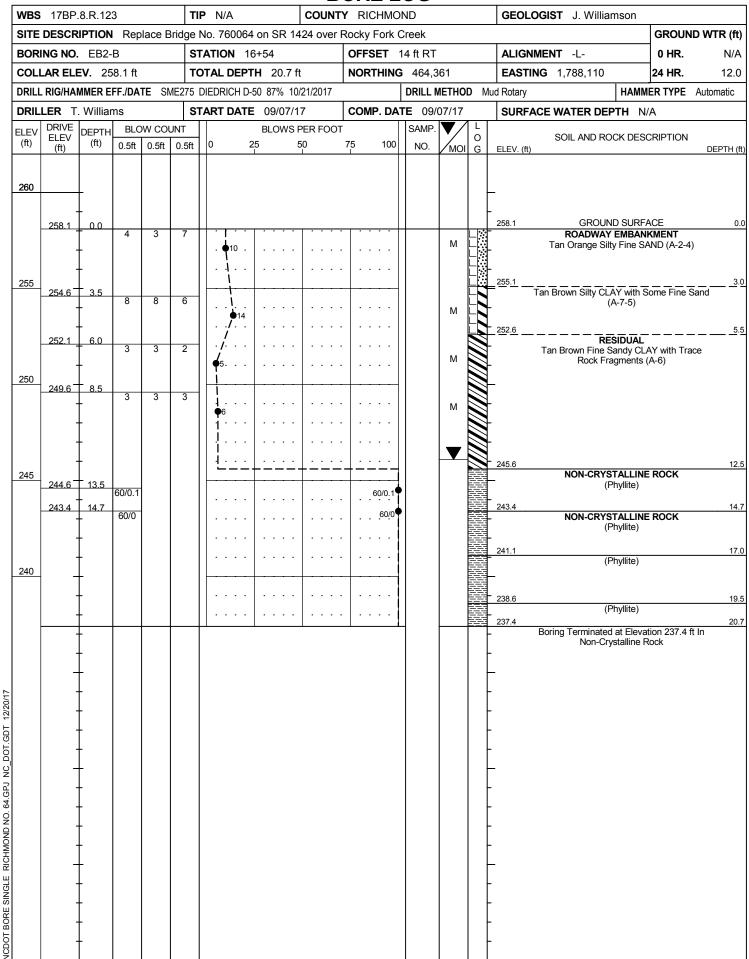

SUPPLEMENTAL LEGEND, GEOLOGICAL STRENGTH INDEX (GSI) TABLES FROM AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS (PAGE 2 OF 2)


FROM AASHTO LRFD BRIDGE DESIGN AASHTO LRFD Figure 10.4.6.4-2 — Determination of GSI for Tectonically Def	SPECIF		S (PAGE	2 OF 2	?)
GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos. P and Hoek E., 2000)					
From a description of the lithology, structure and surface conditions (particularly of the bedding planes), choose a box in the chart. Locate the position in the box that corresponds to the condition of the discontinuities and estimate the average value of GSI from the contours. Do not attempt to be too precise. Quoting a range from 33 to 37 is more realistic than giving GSI = 35. Note that the Hoek-Brown criterion does not apply to structurally controlled failures. Where unfavourably oriented continuous weak planar discontinuities are present, these will dominate the behaviour of the rock mass. The strength of some rock masses is reduced by the presence of groundwater and this can be allowed for by a slight shift to the right in the columns for fair, poor and very poor conditions. Water pressure does not change the value of GSI and it is dealt with by using effective stress analysis.	VERY GOOD - Very Rough, fresh unweathered surfaces	GOOD - Rough, slightly weathered surfaces	FAIR - Smooth, moderately weathered and altered surfaces	POOR - Very smooth, occasionally slickensided surfaces with compact coatings or fillings with angular fragments	VERY POOR - Very smooth, slicken- sided or highly weathered surfaces with soft clay coatings or fillings
COMPOSITION AND STRUCTURE				, ,	
A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass, in shallow tunnels or slopes these bedding planes may cause structurally controlled instability.	70 60	A			
B. Sand- stone with stini inter- layers of siltstone amounts C. Sand- stone and siltstone with sand- stone layers shale with sandstone layers		50 B 40	C [) E	
C.D.E. and G - may be more or less folded than illustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H.			30	F/ 20	
G. Undisturbed silty or clayey shale with or without a few very thin sandstone layers W. Tectonically deformed silty or clayey shale forming a chaotic structure with pockets of clay. Thin layers of sandstone are transformed into small rock pieces.			\$	/ 	10
─────────────────────────────────────					DATE: 8-19-16









GEOTECHNICAL BORING REPORT

										<u>UI</u>	LOG			
VBS 17	7BP.8	8.R.123	3		TIP	N/A		C	OUNT	ΥF	HMOND GEOLOGIS	ST J. Williamson		
SITE DES	SCRI	PTION	Rep	lace Brid	ge No	. 7600	64 on SF	1424	over	Rock	ork Creek		GROUN	ND WTR (f
BORING	NO.	EB1-	A		STA	ΓΙΟΝ	15+28			OF	T 15 ft LT ALIGNMEN	NT -L-	0 HR.	N/A
OLLAR	ELE	V. 25	7.8 ft		TOT	AL DE	PTH 21	.1 ft		NO	HING 464,313 EASTING	1,787,990	24 HR.	FIA
RILL RIG	HAM	IMER EI	FF./DA	TE SME2	75 DIE	DRICH	D-50 87%	10/21/	2017		DRILL METHOD Mud Rotary	HAN	IMER TYPE	Automatic
RILLER	₹ T.	Willian	ns		STAF	RT DA	TE 09/0	8/17		СО	. DATE 09/08/17 SURFACE	WATER DEPTH	N/A	
ORE SI	ZE	NQ2			TOTA	AL RU	N 5.0 ft							
(ft) EL	JN .EV ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft) %	AL RUI JN RQD (ft) %	SAMP. NO.	STR REC. (ft) %	RQD (ft) %	L O G	DESCRIPTION .EV. (ft)	AND REMARKS		DEPTH
41.7	17	16.1									Begin Cori	ng @ 16.1 ft		
24	''' 	16.1	5.0	1:15	(4.8) 96%	(1.2) 24%		(4.8) 96%	(1.2) 24%		Brownish Gray PHYLLITE, Slightly	TALLINE ROCK to Moderately Weath	ered, Modera	16 Itely
240	+	-		1:30							Hard to Hard, Close Fractur	-	nts at 45°	
	+	.		1:00						蓋	GSI	= 60-65		
	+	-		2:00										
23	6.7	21.1		1:45						薑	6.7			21
	+	.									Boring Terminated at Elevatio	n 236.7 ft In Non-Crys	talline Rock	

GEOTECHNICAL BORING REPORT

									<u> </u>	<u>Ui</u>	E LOG	
	17BP.				TIP						CHMOND GEOLOGIST J. Williamson	
SITE	DESCR	IPTION	Rep	lace Brid	lge No	. 7600	64 on SR	1424	over	Rock	Fork Creek GROUND WTR	R (f
BORI	NG NO.	EB2-	В		STA	TION	16+54			OF	SET 14 ft RT ALIGNMENT -L- 0 HR. 1	N/
COLL	AR ELE	EV . 25	8.1 ft		TOT	AL DE	PTH 20.	.7 ft		NO	THING 464,361	12.
DRILL	RIG/HAI	MMER E	FF./DA	TE SME2	75 DIE	DRICH	D-50 87%	10/21/	2017		DRILL METHOD Mud Rotary HAMMER TYPE Automat	atic
DRILI	LER T	. Williar	ns		STAI	RT DA	TE 09/0	7/17		co	P. DATE 09/07/17 SURFACE WATER DEPTH N/A	
CORE	SIZE	NQ2		T			N 6.0 ft	Loze				
ELEV (ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft) %	JN RQD (ft) %	SAMP. NO.	REC. (ft) %	RQD (ft) %	L O G	DESCRIPTION AND REMARKS ELEV. (ft) DEPT	<u>TH</u>
243.4	243.4	14.7	1.3	2:00/1.3	(1.3)	(1.0)		(2.2)	(2.0)		Begin Coring @ 14.7 ft NON-CRYSTALLINE ROCK	4
-	242.1	16.0	4.7	2:30	100%	77%		96%	87%	蓋	Light Gray PHYLLITE, Fresh to Slightly Weathered, Very Hard, Moderately Close to Close Fracture Spacing, with 1 Joint at 45°	14
	=	-		1:45	94%	38%		(2.3) 92%	(0.4)		GSI = 80-85	17
240	-			1:45				92%	16%		Dark Gray PHYLLITE, Moderately Weathered, Moderately Hard to Soft, Close to Very Close Fracture Spacing, with 5 Joints at 45°, 1 at 20°, and 1 at 60°	
				1:45				(1.2)	(0.4)		238.6 GSI = 50-55	19
-	237.4	20.7		2:15/0.7				100%	33%		237.4 Light Gray PHYLLITE, Slightly Weathered, Very Hard to Hard, Close Fracture Spacing, with 1 Joint at 60°	20
	-										GSI = 60-65	
	_										Boring Terminated at Elevation 237.4 ft In Non-Crystalline Rock	
	-	-										
	-	-										
	-	-										
	-	-										
	-	-										
	-	-										
	-	-										
	-											
	-	-										
	-	-										
	-	_										
	-	-										
	-											
	-	-										
	-	-										
	-	-										
	-	-										
	-											
	-	-										
	-	-										
	-	-										
	-	-										
	-	-										
	=	-										
	-	-										
	-	-										
	-	-										
	-	-										
	-	-										
		i	l	I	1					1		
	-	-										

CORE PHOTO REPORT

WBS: 17BP.8.R.123	TIP: N/A	COUNTY: Richmond	Boring No.: EB1-A							
Site Description: Replace Bridge No. 760064 on SR 1424 over Rocky Fork Creek Geologist: J. Williamson										
Collar Elevation: 257.8 ft	Driller: T. Williams									
Elevation at T.D.: 252.8 ft	Total Depth: 21.0 ft	Total Run: 5.0 ft	Date: 09/08/17							

Box 1 of 1: Top of Box @ 16.0 Feet; Bottom of Box @ 21.0 Feet

CORE PHOTO REPORT

WBS: 17BP.8.R.123	TIP: N/A	COUNTY: Richmond	Boring No.: EB2-B							
Site Description: Replace Bridge No. 760064 on SR 1424 over Rocky Fork Creek Geologist: J. Williamson										
Collar Elevation: 258.1 ft	Collar Elevation: 258.1 ft Core Size: NQ2 Equipment: Diedrich D-50									
Elevation at T.D.: 252.1 ft	Total Depth: 20.7 ft	Total Run: 6.0 ft	Date : 09/07/17							

Box 1 of 1: Top of Box @ 14.7 Feet; Bottom of Box @ 20.7 Feet

PHOTOGRAPHIC RECORD Bridge No. 760064 Over Rocky Fork Creek

Photograph No. 1:

View of -L- and Rocky Fork Creek looking west.

Photograph No. 2:

View of -L- and Rocky Fork Creek looking northeast.